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Abstract	

Background.		Population	dynamics	modeling	can	be	an	effective	tool	for	forecasting	
population	health	effects	and	identifying	sound	policy	decisions.		Systems	dynamics	
modeling	of	population	groups	through	stocks	and	flows	is	highly	effective	for	this	
purpose,	but	representing	diverse	population	characteristics	is	organizationally	
difficult.		Agent‐based	modeling	simplifies	this	process	by	managing	information	at	
the	individual	level.		This	paper	presents	a	Population	Structure	Model	(PSM)	for	
evaluating	the	population	impacts	of	changes	in	individual	behavior	using	cigarette	
smoking	as	the	motivating	example.		

Methods.		Our	model	incorporates	agent‐based,	discrete‐event,	dynamical	systems	
and	microsimulation	to	project	population	health	outcomes.		In	this	analysis,	we	run	
100	simulations	of	a	1:10,000	scale	US	population	(28,142	agents	in	year	2000)	
using	a	discrete‐event	Markov	chain	approach	to	describe	state	transitions	for	
initiating	and	quitting	smoking	and	dying.		New	agents	are	added	through	migration	
and	birth.		Model	inputs	are	obtained	from	US	Census,	vital	statistics,	and	national	
health	survey	data.		

Results.		The	PSM	population	projections	are	consistent	with	US	Census	projections.		
With	constant	initiation	and	cessation	rates,	adult	smoking	prevalence	is	projected	
to	decline	from	about	18.6%	in	2010	to	around	12.5%	in	2050.		Projected	smoking	
prevalence	is	consistent	with	observed	data	from	2000‐2011	and	projections	from	
other	simulation	models.		We	also	estimate	401,000	(95%	CI:	389,000‐413,000)	
smoking‐attributable	deaths	in	2000	among	individuals	ages	35+,	consistent	with	
estimates	from	the	Centers	for	Disease	Control	and	Prevention	(393,000	deaths,	
excluding	fires	and	secondhand	smoke	deaths).	

Conclusions.		The	advantages	of	our	approach	include:	1)	detailed	individual‐level	
characterization	of	health	behaviors	and	outcomes;	2)	extensive	flexibility	in	
representing	demographic	diversity;	3)	use	of	empirical	data	in	model	inputs;	and	
4)	capacity	for	aggregation	and	analysis	at	various	levels	of	population	size.		This	
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approach	allows	for	the	effective	prioritization	of	policy	options	through	evaluation	
of	their	short‐	and	long‐term	health	impacts.	

Introduction 

Problem Definition and Objective 

The	need	for	prioritizing	scarce	public	health	resources	and	planning	for	future	
health	care	needs	necessitates	development	of	methods	for	predicting	how	changes	
in	individual	behaviors	and	associated	disease	risks	will	translate	into	long‐term	
health	trends	in	a	population.	Although	the	effectiveness	of	a	policy	intervention	can	
be	assessed	through	empirical	evidence,	evaluation	of	a	policy	through	data	
collection	and	monitoring	can	be	time	consuming	and	expensive.	In	addition,	
attribution	of	the	effect	a	particular	policy	or	intervention	to	public	health	outcomes	
can	be	methodologically	challenging,	particularly	as	multiple	interventions	are	
implemented	over	the	same	period	of	time.	Computer	modeling	and	simulation	
provide	a	means	for	estimating	and	comparing	the	probable	effects	of	different	
public	health	strategies	prior	to	implementation.	Such	simulation	can	lead	to	better	
initial	choices	and	reduce	the	time	and	expense	required	to	identify	effective	
strategies.	

Population	dynamics	modeling	is	a	well‐established	research	area	that	can	provide	
insight	into	future	health	impacts	associated	with	current	and	future	risk	behaviors	
[1]‐[3].	Population	dynamics	modeling	has	been	a	major	focus	of	mathematical	
biology	for	well	over	200	years	[4],	[5],	representing	population	changes	over	time	
due	to	disease	and	death	as	well	as	changes	in	the	environment	and	available	
resources.	A	mathematical	model	for	population	dynamics	should	represent	the	
significant	processes	affecting	birth,	death,	and	migration	[1],	[6].	More	
sophisticated	models	of	human	population	dynamics	incorporate	behavioral	
diversity	and	its	resultant	consequences.	Unfortunately,	many	human	population	
models	do	not	include	representation	of	human	behavior,	and	those	that	do	typically	
address	the	issue	at	the	population	or	sub‐population	level,	rather	than	at	the	
individual	level.	

Integration	of	agent‐based	modeling	with	population	dynamics	modeling	allows	
direct	representation	of	the	behaviors	of	individuals.	Behaviors	can	be	represented	
using	Markov	chains	that	allow	the	parameterization	of	the	probability	of	each	type	
of	behavior	for	each	individual.	An	agent’s	behavior	affects	its	future	health,	and	
thereby	the	health	of	the	total	population.	In	this	paper	we	present	a	population	
structure	dynamics	modeling	framework	that	incorporates	individual	agent	
decisions,	thereby	offering	extensive	flexibility	in	representing	individual	and	
population	health	outcomes.	We	use	individuals’	cigarette	smoking	behaviors	as	our	
motivating	example,	and	measure	consequences	of	these	individual	behaviors	
across	the	entire	population.	

We	begin	by	presenting	a	brief	overview	of	existing	relevant	computational	models	
and	how	they	have	been	used	to	model	population	dynamics.	We	then	present	a	
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detailed	description	of	our	newly	proposed	model	and	its	mathematical	operation.	
In	the	following	section,	we	then	demonstrate	the	use	of	our	model	to	assess	the	
population‐level	effects	of	individuals’	likelihoods	of	abstaining	from,	initiating	or	
quitting	cigarette	smoking.	Finally,	we	present	conclusions	and	directions	for	future	
research.	

Background 

Most	early	population	models	used	time‐based	update	equations,	in	which	the	birth	
rate	(br)	adds	to	and	the	death	rate	(dr)	subtracts	from	the	population	at	each	point	
in	time	[1],	[7].	

௧ାଵ݊݋݅ݐ݈ܽݑ݌݋݌ ൌ ௧݊݋݅ݐ݈ܽݑ݌݋݌ ൅ ݎܾ ∗ ௧݊݋݅ݐ݈ܽݑ݌݋݌ െ ݎ݀ ∗ 		௧݊݋݅ݐ݈ܽݑ݌݋݌ (1)	

This	equation	can	be	restated	in	difference	form	or	even	differential	form,	under	
assumptions	of	differentiability	for	population	with	respect	to	time.	Also	note	that	
incorporating	migration	requires	one	or	two	additional	rates	(one	for	net	migration	
or	two	for	immigration	and	emigration,	respectively)	that	affect	population	change	
over	time.	An	important	element	missing	from	the	basic	population	update	equation	
above	is	the	dependence	of	the	death	rate	on	risk	behavior.	The	equation	therefore	
cannot	represent	individual	behaviors	and	their	consequences.	However,	various	
approaches	can	be	used	to	model	population	behavior,	risks,	and	health.	Several	
commonly	used	techniques	are	discussed	below.	

Discrete‐Event Methods 

Discrete‐event	based	simulations	are	useful	for	representing	events	occurring	at	
particular	points	in	time	[6]‐[8],	where	the	timestep	can	be	a	fixed	interval	or	driven	
by	the	occurrence	of	events.	Discrete	event	models	represent	the	chronology	of	
changes	in	state	using	a	list	of	times	associated	with	events.	Typically	many	
simulation	runs	are	aggregated	to	determine	mean	values	for	model	outputs.	

Continuous Methods 

Simulations	that	model	continuous	change	are	well	represented	using	a	series	of	
differential	equations.	In	these	models,	determining	the	precise	mathematical	form	
of	these	equations	must	be	done	a	priori.	Model	outputs	from	these	simulations	
typically	will	be	smooth,	but	they	can	include	(continuous)	stochastic	variables.	One	
example	is	the	Lotka‐Volterra	(or	predator‐prey)	equations	describing	the	
continuous	(differentiable)	relationship	between	two	populations,	one	of	which	
preys	upon	the	other	[9].	

System Dynamics 

System	dynamics	(SD)	simulations	model	the	temporal	operation	of	an	entire	
system	and	its	sub‐systems,	typically	using	a	set	of	coupled,	non‐linear	differential	
equations	[6],	[10],	[11].	The	equations	mathematically	represent	the	flow	of	
resource	or	stock	from	one	part	of	the	system	or	sub‐system	to	another.		
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Population	dynamics	can	be	very	effectively	represented	using	differential	
equations,	especially	for	population‐level	birth,	death	and	immigration,	and	thus	are	
very	well	suited	for	SD	methods	[6],	[8],	[11].	SD	models	have	also	been	used	to	
characterize	the	population	health	effects	of	cigarette	smoking	and	various	policy	
options	[12],	[13].	

In	an	SD	model,	individuals	are	not	typically	represented	independent	from	one‐
another.	Instead,	groups	of	like	individuals	are	shown	as	stocks	of	populations	(or	
sub‐populations).	Behaviors	may	be	incorporated	into	an	SD	model	by	use	of	
additional	stocks	and	flows	representing	behavioral	states	and	rates	of	state	
transitions,	respectively.	SD	modeling	of	populations	with	very	diverse	and/or	
overlapping	demographics	and	behaviors	can	become	organizationally	complicated,	
requiring	many	stocks	and/or	co‐flows.	As	an	example,	two	demographic	categories	
(male	and	female)	and	three	behaviors	(never	smoker,	current	smoker	and	former	
smoker)	require	six	stocks,	one	for	each	smoker	category	of	each	sex.	To	include	
more	diverse	demographics	(such	as	individual	age,	race,	and	ethnicity)	and	
different	disease	states,	a	stock	is	needed	for	each	unique	combination	of	states,	and	
flows	are	needed	between	stocks.	Overlapping	characteristics	add	further	
complication.	A	pure	SD	approach	becomes	highly	complicated,	and	flexibility	is	lost	
as	changes	to	the	demographic	or	disease	states	of	interest	require	a	restructuring	
of	the	model.	

Agent‐based Modeling 

Agent‐based	simulations	model	behavior	and	communication	among	individuals	[6],	
[7],	[14]‐[16].	Typically	each	agent	is	autonomous	and	sometimes	independent	of	
other	agents	(i.e.,	no	inter‐agent	communication).	In	agent‐based	models,	agent	
states	of	various	sub‐populations	can	be	measured	and	aggregated	across	many	
simulation	runs	at	each	point	in	time	in	the	simulation.	Demographic	and	behavioral	
information	can	be	stored	at	the	agent	level	and	agents	can	be	aggregated	for	
analysis	according	to	any	relevant	characteristic	(e.g.,	age,	disease‐type,	etc.)	
without	changing	model	structure.	Agent‐based	modeling	therefore	facilitates	
analysis	of	complicated	demographics,	behaviors,	and	health	consequences	through	
management	of	information	at	the	level	of	the	agent.	This	method	has	the	advantage	
of	flexibility	in	terms	of	representational	capability,	but	can	require	large	numbers	
of	agents	and	multiple	simulation	runs	to	assess	the	stochasticity	inherent	in	the	
agents	or	their	individual	behaviors.	

Microsimulation 

Microsimulation,	also	called	microanalytic	simulation,	models	represent	individuals’	
opinions	or	behavior	based	on	real‐world	data	[6],	[17],	[18].	Microsimulation	often	
uses	data	that	reflect	the	behavioral	tendencies	or	preferences	of	individuals	in	the	
population	being	modeled.	These	models	are	typically	extremely	detailed	and	data	
intensive.	Microsimulation	has	been	used	to	model	a	variety	of	health‐related	topics	
including	health	care	utilization	and	expenditures,	infectious	disease	transmission	
and	prevention,	and	the	health	and	economic	effects	of	disease	screening	[19].	
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Warner	et	al.,	for	example,	used	microsimulation	to	model	the	health	and	economic	
impacts	of	a	workplace	smoking	cessation	program	[20].	

Model Use Case: Health Impacts of Tobacco Use 

Various	models	presented	in	the	research	literature	focus	on	the	health	
consequences	of	smoking.	We	discuss	three	of	the	more	prominent	of	these	models	
and	their	contributions	to	the	field	below.	Additional	models	have	been	developed	
by	Richardson	[21],	Roberts	[22],	Cavana	and	Tobias	[23],	Tengs/Osgood/Lin/Chen	
[24],	[25],	and	Apelberg	[26].	

SimSmoke 

SimSmoke	was	developed	in	MS	Excel	by	David	Levy	and	collaborators	and	contains	
a	demographic	population	dynamics	model	that	uses	difference	equations	to	update	
the	total	population	over	time	[27]‐[29].	It	is	used	to	track	the	flow	of	persons	
between	population	sub‐groups,	such	as	never,	former,	and	current	smokers,	as	well	
as	mortality.	SimSmoke	tracks	groups	by	age,	sex,	race/ethnicity	and	smoking	status	
[27]‐[29].	SimSmoke	uses	US	Census	and	national	health	survey	data	as	inputs	and	
can	analyze	a	detailed	set	of	cessation	strategies.	The	model	has	been	validated	in	
U.S.	and	non‐U.S.	populations	[30]‐[33].	

Mendez and Warner Models 

Mendez	and	Warner	have	published	extensively	on	modeling	cigarette	smoking	use	
[34]‐[36].	Their	population	dynamics	models	comprise	a	series	of	dynamic	
equations	parameterized	by	cessation.		Mendez	extends	the	earlier	model	using	
system	dynamics	to	provide	a	detailed	representation	of	youth	experimentation	as	
well	as	relative	risks	that	vary	by	sex,	age,	age	at	cessation,	and	years	since	quitting	
for	smokers	[37].	

The	Mendez‐Warner	models	use	birth	cohorts	and	do	not	include	migration	effects.	
Initiation	in	all	models	occurs	entirely	at	18	years	of	age,	using	an	aggregate	
initiation	rate	derived	from	a	target	prevalence	value.	

Prevention Impacts Simulation Model (PRISM) 

The	Prevention	Impacts	Simulation	Model	(PRISM)	is	an	SD	model	developed	by	
Jack	Homer	and	collaborators	to	assist	in	planning	and	evaluating	health	care	
intervention	strategies	[38].	It	represents	major	health	conditions,	including	
smoking,	that	contribute	to	cardiovascular	disease.	The	population	is	divided	
according	to	sex	and	three	age	groups.	Risk	factors	for	the	population	are	based	on	
the	Framingham	Heart	Study	[39].	

Advantages of our Approach and its Application 

The	models	described	above	have	aided	our	understanding	of	the	population	health	
effects	of	tobacco	use	and	tobacco	control	policies.	We	have	incorporated	useful	
features	from	many	of	them	in	our	modeling	approach.	Specifically,	our	model	is	an	
agent‐based	discrete‐event	model	of	population	structure	that	uses	a	Markov	chain	
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approach	to	describe	state	transitions	due	to	tobacco	use,	while	incorporating	
elements	of	dynamical	systems	and	microsimulation	modeling.	Our	approach	can	
incorporate	expected	changes	in	demographics,	behaviors,	disease	risks	and	the	
availability	of	different	tobacco	products;	it	allows	flexibility	to	aggregate	and	
disaggregate	results	for	the	national	population	and	sub‐populations;	and	it	can	
represent	expected	stochastic	variability	due	to	uncertainties	in	demographic	inputs	
and	mortality	rates.	Our	model	also	allows	for	the	possibility	of	adding	inter‐agent	
communications	and	dynamics	in	the	future.	In	this	paper	we	demonstrate	the	
efficacy	of	using	hybridized	modeling	and	an	underlying	behavioral	approach	for	
projecting	future	health	states.		

Methods  

Population Structure Model (PSM) Conceptual Approach 

The	PSM	represents	a	discrete‐event,	agent‐based	modeling	approach	offering	
support	for	microsimulation	and	cohort	analysis	of	populations	on	the	scale	of	
specific	small	communities	up	to	whole	countries.	Although	it	can	be	applied	to	a	
range	of	public	health	issues,	in	this	paper,	we	model	the	population	health	effects	of	
changing	patterns	of	cigarette	smoking.		In	the	PSM,	each	individual	is	represented	
as	a	separate	agent.	Agents	are	characterized	by	intrinsic	values,	behavioral	states	
and	health	states.	Intrinsic	values	such	as	sex	are	permanent	over	the	length	of	the	
simulation	while	other	intrinsic	values	such	as	age	change	at	each	timestep.	
Behavioral	states	refer	to	the	agent’s	available	options	at	each	timestep,	such	as	
initiating	or	quitting	cigarette	smoking,	and	health	states	characterize	the	possible	
health	status	of	the	individual	at	each	timestep	in	the	simulation.	

An	initial	agent	population	is	established	based	on	empirical	data	and	new	agents	
are	generated	through	births	and	immigration.	Markov	chains	that	capture	the	
probability	of	state	changes	are	used	to	represent	agent	behavior	and	consequential	
outcomes	including	deaths	attributable	to	the	behavior.	The	output	results	of	the	
PSM	allow	us	to	project	population	health	effects.	

Figure	1	shows	a	conceptual	diagram	of	the	population	flux	(beginning	in	upper	left)	
and	the	progress	of	a	single	sample	agent	through	the	course	of	a	hypothetical	
lifetime	using	a	Markov	chain.			
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Figure	1.	Conceptual	Diagram	for	Population	Structure	Model	(PSM)	with	Health	and	Smoking	
Transitions.	Behavioral	(blue)	and	health	(orange)	state	transition	probabilities	depend	on	age,	sex	and	
smoking	status	Faded	colors	and	dashed	lines	indicate	potential	elements	that	may	be	included	in	future	

versions	of	the	PSM	The	agent	population	is	modified	through	births,	net	migration,	and	deaths	(upper	left).	In	
the	transition	probability	example	shown,	a	single	agent’s	initial	condition	is	that	of	a	never‐smoking	child	in	
normal	health.	The	possible	paths	this	agent	may	take	as	he	or	she	ages	are	represented	as	arrows	within	a	
Markov	chain,	in	which	movement	from	one	state	to	another	is	described	by	a	transition	probability.	The	

probabilities	associated	with	changes	in	smoking	status	(initiation	and	cessation	rates)	and	health	state	vary	by		
age,	sex,	and	smoking	status.	At	each	timestep,	the	smoking	status	and	health	state	of	the	agent	are	updated,	
while	the	model	tracks	each	agent’s	age,	smoking	status	(including	time	since	cessation)	and	mortality.	The	

figure	does	not	illustrate	all	possible	agent	states.	

The	PSM	uses	agent‐based	modeling	to	represent	individual	behaviors,	which	are	
then	characterized	using	Markov	chains	in	a	similar	manner	to	work	done	by	
Sonnenberg	and	Beck	[40]	and	Killeen	[41].	As	in	microsimulation,	PSM	parameters	
are	determined	using	empirical	data	available	through	sources	such	as	the	US	
Census	and	the	Centers	for	Disease	Control	and	Prevention	(CDC).	Although	this	
version	of	the	PSM	does	not	model	inter‐agent	interactions	or	small	agent	groupings	
(as	is	done	in	many	microsimulation	models),	these	features	could	be	implemented	
in	future	versions.	Finally,	the	PSM	uses	discrete‐event	modeling	to	manage	updates	
of	both	dynamic	system	equations	(such	as	birth	and	immigration)	and	agent‐based	
state	updates.	Advantages	of	discrete‐event	modeling	include	simple	model	
representation	and	operation	as	well	as	direct	comparisons	of	model	output	to	
published	data	and	estimates	(using	aligned	population	groups	and	timestep	
intervals	that	match	published	data).		



8	
	

Model Behavior Representation using Markov Chains 

Changes	in	agent	state	are	represented	in	our	model	using	Markov	chain	transition	
probabilities.	Markov	chains	are	useful	for	representing	states	and	probabilistic	
changes	between	states	as	shown	in	Figure	2.		

	
Figure	2.	An	Example	Markov	Chain.	The	diagram	shows	an	example	of	a	2‐state	Markov	chain	where	the	
probability	of	transitioning	from	state	1	to	state	2	is	0.4,	and	the	probability	of	transitioning	from	state	2	

to	state	1	is	0.8.	

For	this	analysis,	the	states	and	transitions	of	interest	include	mortality	status	(i.e.,	
“alive”	or	“dead”)	and	smoking	status	(i.e.,	“never	smoker,”	“current	smoker”	or	
“former	smoker”)	as	illustrated	by	the	Markov	chain	in	Figure	3.		

	
Figure	3.	Example	Markov	Chain	for	an	18	Year‐old	Male’s	Cigarette	Smoking	Behavior.	This	Markov	chain	

illustrates	a	specific	example	using	transition	probabilities	directly	from	the	PSM,	developed	from	national	
health	survey	data.	

In	our	model,	long‐term	abstinence	rates	are	used	to	model	cessation,	which	
incorporate	quit	attempts	and	relapse	back	to	smoking.		As	described	below,	
cessation	rates	are	derived	from	cohort	analyses	of	serial	cross‐sectional	surveys	
[42].		Although	the	process	of	smoking	cessation	is	often	characterized	by	multiple	
quit	attempts	and	failures,	we	incorporate	the	net	impact	of	this	cycling	on	long‐
term,	successful	cessation.		This	is	demonstrated	by	the	relatively	low	cessation	
rates	used	in	the	model	(see	Figure	5).	

	

Implementation and Parameterization 

Parameter Types and Data Sources 

The	bulleted	listing	below	presents	the	data	sources	used	to	characterize	the	initial	
agent	population	and	their	transition	probabilities.	Population	and	health	
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characteristics	from	the	year	2000,	or	as	close	as	possible,	were	used	to	facilitate	
comparison	of	our	projections	with	observed	data	from	the	last	10+	years.	

The	model	is	typically	run	using	populations	of	28,142	agents,	1/10,000th	of	the	US	
population	in	the	year	2000.	It	has	also	been	run	using	a	population	of	2.8	million	
agents,	a	1/100	scale.	For	output	metrics	involving	large	proportions	of	the	
population,	such	as	future	adult	smoking	prevalence,	28,142	is	an	adequate	agent	
population;	larger	numbers	of	agents	are	required	to	obtain	reasonable	resolution	
when	examining	impacts	to	smaller	groups,	such	as	when	calculating	smoking‐
attributable	deaths	within	a	limited	age	group.	

Data	sources	and	usage	for	parameterization	with	application	to	cigarette	smoking	
are	given	below.	

 Initial	Population	

- Population	counts	by	sex	and	age	group	come	from	the	2000	US	Census	
[43].	

 Changes	to	Population:	Future	births	

- Annual	births	are	proportional	to	the	US	female	population	of	
reproductive	ages.	The	proportionality	constant	was	determined	from	US	
Census	birth	projections	released	in	2008	[43],	[44].	

 Changes	to	Population:	Future	deaths	

- Underlying	age‐	and	sex‐specific	never‐smoker	death	rates	for	ages	35	
and	over	for	year	2000	are	obtained	from	National	Health	Interview	
Survey	(NHIS)	data	linked	for	mortality	follow‐up	[45].	

- Age‐	and	sex‐specific	deaths	rates	for	all	persons	under	35	years	of	age	
are	obtained	from	U.S.	vital	statistics	data	[46].	Given	that	no	excess	
mortality	risk	from	smoking	is	applied	prior	to	age	35,	these	rates	are	the	
same	for	never,	former,	and	current	smokers	for	these	ages	(35	and	
under).	

- Death	rates	for	current	and	former	smokers	are	calculated	by	multiplying	
these	underlying	never‐smoker	death	rates	by	relative	risks	according	to	
sex,	age,	smoking	status,	and,	for	former	smokers,	years	since	cessation.		
Relative	risk	data	come	from	the	American	Cancer	Society	Cancer	
Prevention	Study	II	(CPS‐II)	[47]‐[49]	and	a	smoothing	function	was	
applied.	

- For	former	smokers,	a	lag	period	of	two	years	is	incorporated	after	
smoking	cessation	before	a	reduction	in	mortality	risk	is	applied.		This	
corresponds	to	the	lag	period	between	assessment	of	smoking	status	and	
mortality	follow‐up	in	the	CPS‐II	relative	risks.	

- Scale	factors	obtained	using	the	Lee‐Carter	mortality	projection	method	
[50]	are	used	to	scale	the	underlying	never‐smoker	death	rates	over	time	
in	order	to	incorporate	future	expected	decreases	in	mortality.	
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 Changes	to	Population:	Future	immigration	

- Annual	numbers	of	immigrants	are	proportional	to	the	US	population.	
The	proportionality	constant	was	determined	from	US	Census	net	
international	migration	projections	released	in	2008	[51].	

 Initial	Smoking	Status	

- For	adults	ages	18	and	over:	Current	and	former	smoker	prevalence	by	
age,	sex,	and	time	since	quitting	for	the	US	in	2000	are	obtained	from	
NHIS	data	[52].	

- For	youth	less	than	age	18:	Current	and	former	smoker	prevalence	by	age	
and	sex	are	obtained	from	reconstructions	of	smoking	prevalence	for	
historical	birth	cohorts	from	national	health	survey	(NHIS)	data	[53].	

 Changes	to	Smoking	Status:	Each	year,	agents	have	age‐specific	probabilities	of	
transitioning	from	never	smokers	to	current	smokers	(for	ages	8	to	30)	and	from	
current	smokers	to	former	smokers.	Former	smokers	are	not	allowed	to	become	
current	smokers	again.	

- US	Population	

 Age‐	and	sex‐specific	initiation	probabilities,	for	ages	30	and	
under,	and	cessation	probabilities,	for	all	ages,	are	obtained	from	
reconstructions	of	smoking	prevalence	for	historical	birth	cohorts	
from	national	health	survey	(NHIS)	data	[53].	After	age	30	
initiation	probabilities	are	negligible	and	are	therefore	assumed	to	
be	0.	

 Probabilities	remain	constant	into	the	future	for	the	model	
scenarios	described	here.	

- New	Immigrants:	

 Smoking	prevalence	among	new	immigrants	comes	from	2007‐11	
NHIS	estimates	[52].	Values	used	are	19.1%	smoking	prevalence	
for	men	and	4.4%	for	women.		Former	smoking	prevalences	are	
13.1%	for	men	and	5.6%	for	women.	Values	for	smoking	
prevalence	for	new	immigrants	remain	constant	over	time.	

 After	immigration,	immigrants	have	the	same	probabilities	for	
initiation	and	cessation	as	the	general	population.	

Generating an Initial Population 

US	Census	and	National	Health	Interview	Survey	data	are	used	to	estimate	US	
population	proportions	in	2000	by	sex,	age	group,	and	smoking	status,	shown	in	
Figure	4.	These	data	are	shown	as	proportions	of	the	total	population	but	are	used	
as	a	probability	distribution	to	stochastically	generate	an	initial	population	that	is	
representative	of	the	US	in	terms	of	sex,	age,	and	smoking	status.	This	is	useful	in	
modeling	the	US	population	because	data	inputs	from	nationally	representative	
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samples,	such	as	the	National	Health	Interview	Survey,	have	some	inherent	
uncertainty.	

	

	
Figure	2.	Initial	Model	Population	Distribution	based	on	the	2000	Census	by	Age,	Sex,	and	Smoking	

Status.		

Birth and Immigration 

Annual	births	are	proportional	to	the	US	female	population	of	reproductive	ages.	
Because	smoking‐related	mortality	does	not	occur	in	the	model	until	age	35,	
reproductive	ages	in	the	model	are	restricted	to	15‐34.	This	allows	us	to	keep	
calculations	of	smoking‐related	deaths	and	birth	rate	decoupled,	so	that	an	
equivalent	number	of	new	births	are	modeled	when	comparing	different	scenarios	
of	smoking	initiation	and	cessation.	

Consistent	with	the	US	Census,	annual	numbers	of	immigrants	are	proportional	to	
the	entire	US	population.		

Computing the Effects of Cigarette Smoking 

Cigarette	smoking	initiation	and	cessation	rates	are	obtained	from	reconstructions	
of	historical	birth	cohorts	derived	from	multiple	years	of	the	NHIS	(see	Anderson	et	
al.,	2012	for	detailed	methodology).		The	age‐	and	sex‐specific	initiation	and	
cessation	rates	used	in	the	model	are	shown	in	Figures	5a	and	5b.		The	jagged	
nature	of	the	curves	reflects	the	combination	of	multiple	cohorts.		In	the	smoking	
prevalence	projections	modeled	in	this	paper,	initiation	and	cessation	rates	are	
assumed	to	remain	constant	in	the	future.	
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Age‐	and	sex‐specific	death	rates	for	never	smokers	ages	35	and	over	for	year	2000	
are	obtained	from	NHIS	data	linked	for	mortality	follow‐up	[45].		Age‐	and	sex‐
specific	deaths	rates	for	all	persons	under	35	years	of	age	are	obtained	from	U.S.	
vital	statistics	data	[46].	Given	that	no	excess	mortality	risk	from	smoking	is	applied	
prior	to	age	35,	these	rates	are	the	same	for	never,	former,	and	current	smokers.	

Mortality	rates	for	current	and	former	smokers	are	obtained	by	multiplying	
smoking	relative	risks	by	never	smoker	mortality	rates.	An	individual’s	probability	
of	dying	in	a	given	year	is	given	in	Equation	(2).	

Pr	ሼdeathሽ௜ ൌ ܴܴ௜ ∗ Prሼdeath	| never‐smokerሽ௜	 	 	 	 	 (2)	

In	Equation	(2),	the	probability	of	death	for	a	never	smoker	is	a	function	of	the	
individual’s	sex	and	age.	The	relative	risk	(RR)	associated	with	current	or	former	
cigarette	smoking	is	a	function	of	the	individual’s	age,	sex,	smoking	status,	and,	for	
former	smokers,	years	since	cessation.	
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Figure	5.	Annual	Smoking	Initiation	(5a)	and	Cessation	(5b)	Rates	by	Age	and	Sex.	Input	data	used	for	both	
initiation	and	cessation	probabilities	come	from	analysis	of	multiple	cohorts	from	NHIS	data,	which	accounts	for	

the	jagged	nature	of	these	input	data.		
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Simulations 

To	examine	future	cigarette	smoking	prevalence	for	adults	ages	18	and	over,	we	
simulated	a	scenario	in	which	smoking	initiation	and	cessation	rates	are	kept	
constant	throughout	the	simulation	from	2000	to	2050.			Our	initial	population	
characteristics	(age,	sex,	and	smoking	status)	are	generated	stochastically:	100	
simulations	were	conducted,	each	utilizing	a	different	random	seed,	resulting	in	a	
slightly	different	initial	population	and	behavior	throughout	the	simulation.	Each	
initial	population	is	comprised	of	28,142	agents	(1/10,000th	of	the	year	2000	US	
population).	The	stochastic	variability	introduced	by	the	model’s	initial	population	
and	health	and	behavioral	transition	probabilities	represents	the	expected	
variability	of	the	projections,	given	the	estimated	input	values.		We	report	the	
average	smoking	prevalence	across	the	100	runs,	along	with	95%	confidence	
intervals.	

The	PSM	also	projects	smoking‐attributable	mortality	for	the	US	over	time.	
Smoking‐attributable	deaths	for	a	particular	year	are	estimated	by	comparing	a	
scenario	in	which	current	and	former	smokers’	relative	risks	(RRs)	are	applied	
normally,	with	one	in	which	all	current	and	former	smoker	relative	risks	are	set	to	
1.0.	The	difference	between	the	numbers	of	deaths	in	these	two	scenarios	is	the	
number	of	deaths	attributable	to	smoking	in	the	US	in	that	year.		We	present	the	
average	of	100	simulation	runs,	along	with	the	95%	confidence	interval.	

Results 

Model Validation 

Population Projection 

To	validate	the	model,	we	first	compared	PSM‐generated	US	population	projections	
to	those	of	the	US	Census	Bureau	[54].		Our	initial	population	projections,	shown	in	
red	in	Figure	6,	were	lower	than	those	of	the	Census	Bureau.	This	discrepancy	was	
addressed	by	including	time‐varying	mortality	scale	factors	derived	from	the	Lee‐
Carter	mortality	forecasting	method	[50]	that	account	for	projected	future	
decreases	in	mortality	rates,	as	shown	in	Figure	7.		The	resulting	population	
projections	are	highly	consistent	with	Census	projections.	
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Figure	6.	PSM	Population	Projection	with	and	without	Lee‐Carter	Mortality	Forecasting	Method	

Compared	with	US	Census	Projection.	

	

	

	
Figure	7.	Lee‐Carter	Mortality	Scale	Factors	for	Age	50	by	Sex.		

Population	projections	from	our	model	can	be	also	disaggregated	into	subgroups	
using	characteristics	such	as	age	group	and	sex.	For	example,	we	project	a	US	
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population	count	of	215	million	males	and	220	million	females	in	2050,	consistent	
with	US	Census	projections	of	216.5	million	and	223.9	million	males	and	females,	
respectively.	

Adult Smoking Prevalence 

Figure	8	presents	the	projected	cigarette	smoking	prevalence	for	adults	ages	18	and	
over,	under	a	status	quo	scenario	in	which	smoking	initiation	and	cessation	rates	
are	kept	constant	throughout	the	simulation	from	year	2000	to	2050.		Figure	8	also	
compares	projections	from	our	model,	labeled	“PSM	Status	Quo,”	with	CDC	
estimates	[55]	and	the	results	of	other	published	modeling	analyses	[35],	[36],	[56].	
The	results	show	consistent	agreement.		

	

	
Figure	8.	Comparison	of	Adult	Smoking	Prevalence	in	Population	Models	and	CDC	Data.	PSM	Status	Quo	
results	are	the	average	of	100	simulation	runs.	PSM	adult	prevalence	projections	compare	favorably	with	results	
from	the	SimSmoke	and	Mendez‐Warner	models	described	above.	Results	from	Mendez‐Warner	for	2000	and	
2005	are	from	their	2000	paper	[35],	and	2010	and	2020	results	are	from	their	2008	paper	[36].	Results	from	
SimSmoke	are	taken	from	a	recent	paper	in	which	the	SimSmoke	model	is	initialized	using	2003	CDC	prevalence	
values	[56].	The	PSM	average	prevalence	values	reported	for	the	100	simulations	are	quite	smooth;	maximum	

values	of	the	95%	confidence	interval	are	0.1%	of	the	calculated	mean.	

All	of	the	models	show	a	similar	downward	trend	in	smoking	prevalence.	Our	status	
quo	PSM	scenario,	which	uses	constant	sex‐	and	age‐specific	initiation	and	cessation	
rates,	projects	declines	in	smoking	prevalence	over	time	due	to	smoking	initiation	
rates	having	fallen	in	decades	prior	to	2000.	Smoking	prevalence	approaches	a	
steady	state	and	reaches	a	value	of	about	12.5%	by	2050.	Figure	9	shows	PSM	
projections	of	adult	current	and	former	smoking	prevalence	by	sex,	along	with	
comparisons	to	CDC	estimates.		
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Figure	9.	PSM	Adult	Smoking	Prevalence	Projections	and	CDC	Estimates	by	Sex.	

Figures	10a	and	10b	present	PSM	prevalence	projections	by	age	group	and	sex.	
Although	youth	smoking	prevalence	is	typically	reported	as	smoking	in	the	past	30	
days,	our	estimates	among	youth	reflect	more	frequent,	sustained	use.		The	10‐17	
and	18‐34	year	old	age	groups	are	very	close	to	their	equilibrium	prevalence	by	
2010	as	a	result	of	initiation	and	cessation	rates	being	held	constant	in	the	
simulation	beginning	in	2000.		Older	age	groups	show	decreases	in	prevalence	over	
time	as	these	groups	become	populated	by	individuals	who	have	experienced	lower	
initiation	and	higher	cessation	rates.	
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Figure	10a	and	10b.	Projected	male	(10a)	and	female	(10b)	smoking	prevalence	by	age	group	and	time.	
Error	bars	represent	95%	confidence	intervals	across	100	runs.	
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Smoking‐Attributable Deaths 

For	the	year	2000,	using	all‐cause	mortality	relative	risks,	the	PSM	computes	the	
401,000	smoking‐attributable	deaths	for	ages	35	and	over	with	a	95%	confidence	
interval	(CI)	of	389,000‐413,000.	This	estimate	is	consistent	with	the	annual	CDC	
estimate	for	2000‐2004	of	393,000	(not	including	second‐hand	smoke	and	in‐home	
fire	deaths)	and	the	SimSmoke	reported	value	of	418,317	for	2000	[30].	

Conclusions/Future Work 

We	have	presented	a	population	structure	model	capable	of	forecasting	the	effects	
of	changes	in	individual	behaviors	on	overall	population	health.	We	have	used	
cigarette	smoking	as	an	example	to	demonstrate	the	value	of	our	approach	in	
providing	projections	that	can	be	used	for	policy	formulation	and	evaluation.	This	
approach	can	be	easily	adapted	to	other	risk	behaviors	and	conditions	that	affect	
health	at	the	population	level,	such	as	alcohol	consumption	and	obesity.	

In	this	example,	our	model	uses	a	1:10,000	scaled	population	that	is	nationally	
representative	of	the	US	in	terms	of	demographic	characteristics	and	smoking	
status.	We	established	a	baseline	status	quo	projection	using	constant	sex‐	and	age‐
specific	smoking	initiation	and	cessation	rates	that	allows	for	comparison	with	
scenarios	in	which	tobacco	control	measures	affect	these	rates.	Our	model	projects	
future	smoking	prevalence	and	smoking‐attributable	mortality.	With	appropriate	
inputs,	the	model	can	be	easily	extended	to	compute	estimates	of	cause‐specific	
mortality,	morbidity,	quality‐adjusted	life	expectancy,	and	health	care	costs.	The	
model	can	be	applied	to	other	types	of	tobacco	products,	and	additional	
demographic	characteristics	such	as	race/ethnicity	can	be	easily	incorporated	
because	of	the	agent‐based	approach.	Model	parameters	can	be	represented	by	
probability	distributions,	thus	allowing	for	the	estimation	of	variability	for	results	
and	projections.		

We	have	shown	that	our	model	produces	population	and	health	projections	that	are	
consistent	with	published	data	and	estimates.	Our	use	of	time‐varying	demographic	
inputs,	such	as	properly	scaled	underlying	never	smoker	mortality	rates,	produces	
population	projections	that	are	consistent	with	US	Census	projections.	These	
techniques	will	allow	us	to	project	future	health	outcomes	such	as	smoking‐
attributable	mortality	with	greater	accuracy	than	has	been	possible	previously.		

Finally,	in	designing	and	implementing	this	model,	we	have	shown	that	a	hybrid	
discrete‐event	agent‐based	model	has	many	advantages	in	projecting	population	
and	health	outcomes	compared	with	any	other	single	type	of	modeling	approach.	
This	modeling	approach	generates	agents	with	specific	demographic	and	smoking	
characteristics,	allowing	us	to	characterize	the	behavior	of	each	agent	at	the	
individual	level.	We	can	aggregate	results	for	the	entire	population	or	for	
demographic	subpopulations	of	particular	interest.	Expansion	of	this	model,	as	
applied	to	tobacco,	will	include	multiple	products,	cause‐specific	morbidity	and	
mortality,	and	more	specificity	in	demographic	characteristics.		These	extensions	
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will	allow	us	to	model	even	more	fully	the	possible	effects	of	patterns	in	tobacco	use	
on	future	morbidity	and	mortality	in	the	US.	
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FIGURE	TITLES	AND	LEGENDS	
Figure	3.	Conceptual	Diagram	for	Population	Structure	Model	(PSM)	with	Health	and	
Smoking	Transitions		

Behavioral	(blue)	and	health	(orange)	state	transition	probabilities	depend	on	age,	
sex	and	smoking	status	Faded	colors	and	dashed	lines	indicate	potential	elements	
that	may	be	included	in	future	versions	of	the	PSM	The	agent	population	is	modified	
through	births,	net	migration,	and	deaths	(upper	left).	In	the	transition	probability	
example	shown,	a	single	agent’s	initial	condition	is	that	of	a	never‐smoking	child	in	
normal	health.	The	possible	paths	this	agent	may	take	as	he	or	she	ages	are	
represented	as	arrows	within	a	Markov	chain,	in	which	movement	from	one	state	to	
another	is	described	by	a	transition	probability.	The	probabilities	associated	with	
changes	in	smoking	status	(initiation	and	cessation	rates)	and	health	state	vary	by		
age,	sex,	and	smoking	status.	At	each	timestep,	the	smoking	status	and	health	state	
of	the	agent	are	updated,	while	the	model	tracks	each	agent’s	age,	smoking	status	
(including	time	since	cessation)	and	mortality.	The	figure	does	not	illustrate	all	
possible	agent	states.	

Figure	2.	An	Example	Markov	Chain		
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The	diagram	shows	an	example	of	a	2‐state	Markov	chain	where	the	probability	of	
transitioning	from	state	1	to	state	2	is	0.4,	and	the	probability	of	transitioning	from	
state	2	to	state	1	is	0.8.	

Figure	3.	Example	Markov	Chain	for	an	18	Year‐old	Male’s	Cigarette	Smoking	
Behavior		

This	Markov	chain	illustrates	a	specific	example	using	transition	probabilities	
directly	from	the	PSM,	developed	from	national	health	survey	data.	

Figure	4.	Initial	Model	Population	Distribution	based	on	the	2000	Census	by	Age,	Sex,	
and	Smoking	Status		

Figure	5.	Annual	Smoking	Initiation	(5a)	and	Cessation	(5b)	Rates	by	Age	and	
Sex	

Input	data	used	for	both	initiation	and	cessation	probabilities	come	from	
analysis	of	multiple	cohorts	from	NHIS	data,	which	accounts	for	the	jagged	
nature	of	these	input	data	

Figure	6.	PSM	Population	Projection	with	and	without	Lee‐Carter	Mortality	
Forecasting	Method	Compared	with	US	Census	Projection	

Figure	7.	Lee‐Carter	Mortality	Scale	Factors	for	Age	50	by	Sex	

Figure	8.	Comparison	of	Adult	Smoking	Prevalence	in	Population	Models	and	
CDC	Data		

PSM	Status	Quo	results	are	the	average	of	100	simulation	runs.	PSM	adult	
prevalence	projections	compare	favorably	with	results	from	the	SimSmoke	
and	Mendez‐Warner	models	described	above.	Results	from	Mendez‐Warner	
for	2000	and	2005	are	from	their	2000	paper	[35],	and	2010	and	2020	
results	are	from	their	2008	paper	[36].	Results	from	SimSmoke	are	taken	
from	a	recent	paper	in	which	the	SimSmoke	model	is	initialized	using	2003	
CDC	prevalence	values	[56].	The	PSM	average	prevalence	values	reported	for	
the	100	simulations	are	quite	smooth;	maximum	values	of	the	95%	
confidence	interval	are	0.1%	of	the	calculated	mean.	

Figure	9.	PSM	Adult	Smoking	Prevalence	Projections	and	CDC	Estimates	by	Sex	

Figure	10a	and	10b.	Projected	male	(10a)	and	female	(10b)	smoking	
prevalence	by	age	group	and	time	

Error	bars	represent	95%	confidence	intervals	across	100	runs.	

	


